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Abstract—A new approach of using multiwavelets in the finite-
element method for electromagnetic-wave problems is presented
for the first time. In this approach, the multiscalets are employed as
the basis functions. Due to the smoothness, completeness, compact
support, and interpolation property of the multiscalets, in terms
of the basis function and its derivatives, fast convergence in ap-
proximating a function is achieved. The new basis functions are

1, i.e., the first derivatives of the bases are continuous on the
connecting nodes. Thus, the divergence-free condition is satisfied
at the end points. The multiscalets, along with their derivatives,
are orthonormal in the discrete sampling nodes. Therefore, no cou-
pled system of equations in terms of the function and its deriva-
tive is involved, resulting in a simple and efficient algorithm. Nu-
merical results demonstrate the high efficiency and accuracy of
the new method. For a partially loaded waveguide problem, we
have achieved a factor of 16 in memory reduction and 435 in CPU
speedup over the linear edge-element method.

Index Terms—Compact support, finite-element method (FEM),
interpolation, multiresolution analysis (MRA), multiwavelets,
propagation modes, regularity, splines, waveguide.

I. INTRODUCTION

THE edge-element method (EEM) is a popular and
powerful numerical approach in computational electro-

magnetics [1]–[3]. It allows the normal component of the vector
field to be discontinuous across the adjacent elements and han-
dles field singularity better than the node-based finite-element
method (FEM) [4], [5]. While higher order basis functions in
the EEM improve numerical accuracy and convergence (in
terms of discretization size), they increased the complexity of
the algorithm and bandwidth of the system matrix dramatically.
The Lagrange-based interpolation matches the function being
approximated at the discrete points (nodes) by linear, quadratic,
or cubic polynomials, depending on the interpolation order.
Nonetheless, the slope (derivative) and curvature (second
derivative) of the function have never been matched at the
nodes, regardless of the order of the polynomials.

Attempts were made to address the slope by using the splines
because of the short support and nice features of the splines [6].
Unfortunately, simultaneous system equations in terms of the
function and its derivative values must be solved in order to em-
ploy the splines. This complicity has rendered the interpolatory
spline unpopular in the FEM.

Recently, advances in wavelets have opened an opportunity
to reconsider the problem. The extracting features of standard
(scalar) wavelets are orthogonality, vanishing moments, com-
pact support, multiresolution analysis (MRA), regularity, and
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symmetry. However, it was rigorously proven by Daubechies
[7] that standard wavelets cannot simultaneously possess
compact support, symmetry, continuity, and orthogonality. In
addition, most orthogonal wavelets (except the Haar wavelets)
do not have explicit expressions in the time (spatial) domain.
Therefore, it is difficult to incorporate wavelets into the FEM.
Multiwavelets extended the scalar dilation equation into the
vector–matrix form. As a result, more flexibilities are offered
by the multiwavelets, i.e., to have simultaneously compact
support, MRA, interpolation, orthogonality, and symmetry/an-
tisymmetry, and even explicit expressions.

In this paper, we follow the finite-element formulation, but
use multiwavelets as the basis functions to replace the traditional
linear or higher order Lagrange interpolation shape functions.
We employ the canonical multiwavelets developed by Strela
and Strang [9], with the support of . They are smooth, in-
terpolating, complete, and compactly supported. For a multi-
scaling function (we use scalet to be a counterpart of wavelet),
the function, its first, second, and third derivatives, are mutu-
ally uncoupled, allowing the development of a simple and ef-
ficient Galerkin-type algorithm. Under the same partitioning,
the nonzero entries in the corresponding system matrix of the
multiwavelet FEM is roughly twice that of the linear FEM. The
multiwavelet basis matches a function and its slope values when
multiplicity , or matches the function, slope, and the cur-
vature if multiplicity . Such a high fidelity in approx-
imation leads to a fast convergence, which can be seen from
Taylor’s expansion in terms of , the interval size.
Hence, the multiwavelet discretization may be much coarser, yet
produces the same numerical precision as the linear EEM with
much finer mesh size. It is noticed that enforcement of higher
order derivative continuities worsens the resulting system ma-
trix slightly, provided the basis functions are properly scaled.
In this paper, only is implemented. Numerical examples
of one-dimensional (1-D) Sturm–Liouville problem and two-di-
mensional (2-D) partially loaded waveguide problem demon-
strate the high efficiency and accuracy of the proposed method.

II. ORTHOGONAL MULTIWAVELETS

A. Basic Theory

Basic theory of orthogonal multiwavelets can be found in
many mathematical papers [9]–[11]. However, for readers
without mathematical sophistication, it is not a trivial task to
comprehend the arcane concepts and convert them into mean-
ingful and useful engineering tools. In this section, we briefly
quote basic multiwavelet principles that are used to construct
and facilitate the orthogonal multiwavelets. The multiscalets

are polynomials of degree
on and and zero elsewhere, with continuous
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derivatives. They satisfy

(1)

where

...
...

Kronecker delta

identity matrix of

multiplicity. (2)

The column vector

(3)

satisfies the matrix dilation equation

(4)

where the coefficients are matrices of and are computed
in Section II-B. The orthogonal multiwavelets also satisfy the
matrix dilation equation

(5)

where the coefficients can be solved in terms of . The de-
tailed discussion can be found in [12]. The multiscalets

generate subspaces such that

(6)

closure (7)

The multiwavelets and their translates are linearly
independent and create a basis of the subspace such that

(8)

It follows from (6) to (8) that

(9)

These properties are referred to as the MRA, the same as the
scalar wavelet case. In this paper, only the multiscalets are em-
ployed.

If we take a close look at (1), we find that

Explicitly, it states that interpolates at the sampling point
(integer) , but assumes 0 at other sampling points

. The derivatives are zero
at all integer sampling points. Similarly, interpolates at
integer point , but assumes zero elsewhere for any deriva-
tives other than 1. In general,

(10)

While spline interpolation fits a set of function values by solving
a coupled linear system, the property (10) of the multiwavelets
provides interpolation that is completely uncoupled.

will be employed in the finite element as the shape
functions.

B. Construction of Multiscalets

It can be derived [10] that the coefficients matrices in (4) are

(11)

Matrices and are related by

(12)

with

(13)

Matrix is given by

(14)

where

(15)

and

(16)

For the piecewise cubic case, i.e., ,

Hence,
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and was given in (11) as

Since the support of is , the nonzero coefficients
(called low-pass filters in wavelet literature) are only
and . Following the construction of the Daubechies scalets
[7], the multiscalets and can be built by a simple
iteration program or an eigenvalue algorithm called the cascade
method. While the Daubechies scalets constructed by the
aforementioned methods do not have analytical expressions,
the multiscalets do have explicit formulas. It was found that,
for ,

(17)

and

(18)

It may be verified easily that

The curves of and obtained by an iteration method
and by explicit expressions are plotted in Fig. 1. It can be seen
that and are symmetric and antisymmetric about

, respectively.
For higher values of multiplicity ,

(19)

In case of ,

The curves of and are plotted in Fig. 2. The
explicit polynomials of and are

Fig. 1. Multiwavelets of r = 2.

Fig. 2. Multiwavelets of r = 3.

on the interval . Using the symmetry/antisymmetry, one
can obtain the closed-form expressions on the interval .
General expressions of multiscalets with arbitrary can be
found in [12].

III. FORMULATION OF THE PROBLEM

A. 1-D Case

A typical boundary-value problem can be defined by a gov-
erning differential equation in a domain

(20)

together with boundary conditions on the boundary that en-
closes the domain. Here, is a differential operator, is the
excitation, and is the unknown function.

In the FEM, the first step is to divide the computational do-
main into small subdomains, which are called elements. The
second step is to select the interpolation functions and then rep-
resenting the unknown function in each subdomain with the in-
terpolation functions. The third and fourth steps are to formulate
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the system equations and to solve the system equations. In the
simplest case, the Lagrange linear interpolation functions are
employed.

An improvement of the FEM is to use high-order interpola-
tion functions. However, the derivatives of the unknown func-
tion at the connecting nodes of subdomains are still discontin-
uous. To overcome this drawback, multiwavelet basis functions
are adopted. These basis functions are of high-order interpola-
tion functions

(21)

where the superscript stands for elements. Fig. 3 depicts the
four basis functions.

By comparing (21) against (17) and (18), one finds that is
, given in (17), but shifted by and scaled by . is ,

given in (18), but shifted by and scaled by . Similarly,
and are the shifted and scaled versions of .

A feature of the multiwavelets basis is that the values of
vanish at the two nodes and , while the derivatives of
vanish at the two nodes. Therefore, the unknown function can
be written as

(22)

(23)

Let us consider a 1-D Sturm–Liouville problem

(24)

The Galerkin method produces the following formulas:

Fig. 3. Four basis functions.

(25)

and

(26)

Finally , we arrive at a system equation of the problem

(27)
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In the above equation,

(28)

B. 2-D Case

The 2-D waveguide problem is considered here. The
boundary-value problem in the full-wave analysis of an inho-
mogeneously filled waveguide is defined by the vector-wave
equation

in (29)

with the boundary conditions

on

on (30)

In the previous equations, denotes the cross section of the
structure whose boundary is comprised by the electrical wall
and the magnetic wall . The equivalent variational problem
with real and is given by

on
(31)

where

(32)
Assuming a known -dependence of

, the functional can be written as

The functional can be discretized to yield an eigenvalue system
that can be solved for for a given . However, in engi-
neering practice, it is usually preferred to specify the operating
frequency, then solve for propagation constant .

To alleviate the difficulty, the following transformation is in-
troduced [8]:

The normalized version of the functional is

Apparently, the eigenvalue equation of discretization of this
functional for a given will result in a system with as its
eigenvalue. To this end, the cross-sectional area is subdivided
into small rectangular or triangular elements. Within each
element, the vector field can be expanded as

(33)

and

(34)

where and are vector and scalar interpolation functions,
respectively.

The functional can then be discretized as

(35)

where and are all integrals in the cor-
responding elements, which can be evaluated analytically.

Adding all elements into a global matrix, we obtain the
system matrix of

(36)

where

Traditionally, one employs the linear interpolation functions

(37)
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Here, we use multiwavelet interpolation functions as the edge
bases

(38)

where the last four interpolation functions are the derivative
bases denoted as in (22) and (23). The reason we changed
notation is to have a compact expression of (39), as shown
below. The interpolation functions for the -component remain
unchanged, and the transverse fields are written as

(39)

where

(40)

IV. NUMERICAL RESULTS

Example 1: For a 1-D case, we choose a simple problem

The analytical solution is given in [8] as

The comparison of the analytical solution with the result ob-
tained by a multiwavelets-based FEM is plotted in Fig. 4. From
this figure, the numerical solution matches the function and its
derivative values very well.

Example 2: Dispersion characteristics of a partially loaded
waveguide, as shown in Fig. 5, are computed to test the mul-
tiwavelets-based EEM. The results are plotted in Fig. 6. As a
comparison, the first six propagation modes obtained by using
the traditional linear EEM are plotted in Fig. 7.

Fig. 4. Multiwavelets-based FEM in a 1-D case.

Fig. 5. Configuration of a partially loaded waveguide.

Fig. 6. Results obtained by the multiwavelet FEM (4 � 4 elements).

While the wavelet FEM faithfully predicts the dominating
mode, the linear FEM demonstrates substantial errors on the
dominating mode. For the higher order modes, the wavelet FEM
closely follows the trend of the analytic solutions. In contrast,
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Fig. 7. Results obtained by the linear FEM (4 � 4 elements).

TABLE I
L PERFORMANCE COMPARISON FOR THE DOMINATING MODE

Fig. 8. Linear EEM matrix from an inhomogeneous waveguide with 16� 16
elements.

the linear FEM lost tracking of the fourth to sixth modes. To
compare the two approaches quantitatively, we created Table I.

Fig. 9. Multiwavelet EEM matrix from an inhomogeneous waveguide with 16
� 16 elements.

It can be clearly seen that, in terms of the error, the wavelet
FEM with 4 4 elements performs better than the linear FEM
of 16 16 elements. This result reveals a memory saving of 16
and a CPU time cut of 435.

Interestingly enough, under the same discretization, the ma-
trix size of the multiwavelet EEM is roughly 2 2 times that of
the linear EEM. This is due to the fact that we add the deriva-
tive bases into the multiwavelet EEM in addition to the function
bases. However, the nonzero entries in the multiwavelet matrix
only increased approximately twice. Figs. 8 and 9 illustrate the
matrix pattern and nonzero elements from the inhomogeneous
waveguide with 16 16 elements. Notice that the multiwavelet
solution in Table I never used the 16 16 division since the 4

4 multiwavelet scheme has already had superior performance
to that of the 16 16 linear FEM.

V. CONCLUSION

In this paper, the multiwavelet scaling functions have been
constructed and applied to the 1-D and 2-D finite-element for-
mulation. As a result of the smoothness, interpolatory property,
orthogonality, compact support, and symmetry/antisymmetry of
the multiscalets, fast convergence of the new algorithm has been
achieved. This method has yielded enormous savings in com-
putational effort compared to prior methods, and can easily be
extended to three-dimensional (3-D) problems using cubic ele-
ments.
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